SUMMARY

Dynamics of Medetera meridionalis Negrobov (Diptera, Dolichopodidae) and other insects' trapping into coloured sticking traps on spring wheat/I. Y. Grichanov.

It has been stated that coloured traps made of laminarized dark flesh-coloured paper with 540—547 nm wave length can be used under conditions of North Kazakhstan for monitoring series of spring wheat pests (corn thrips, striped flea beetle, Sitobian fragarie) and entomophages Hymenoptera, long-legged flies). The peak of trapping happens at the period of grain wasy ripeness. Medetera flew more intensively from stem growth phase up to ear formation.
ДИНАМИКА ОТЛОВА Mecoptera meridionalis Negrobov (Diptera, Dolichopodidae) И ДРУГИХ НАСЕКОМЫХ В ЦВЕТНЫЕ КЛЕЙКИЕ ЛОВУШКИ НА ЯРОВОЙ ПШЕНИЦЕ

И. Я. ГРИЧАНОВ

В последние годы на зерновых культурах проходит экспериментальную проверку метод учета вредных и полезных насекомых с помощью цветных клейких ловушек. Работа ловушек заключается в том, что насекомые привлекаются на цвет ловушки и фиксируются на ее поверхности, покрытой тонким слоем невысыхающего клея.

Ловушки, предложенные Всероссийским НИИ защиты растений* (п. Рамонь Воронежской области), представляют собой прямоугольную пластину 15×20 см из ламинарированной бумаги темноголубого цвета (540—547 нм). В верхней и нижней частях ловушки имеются отверстия, к которым прикрепляют нити, с помощью которых ловушки крепятся в вертикальном положении к колышам. Невысыхающий клей «Липофикс» (Институт химии, г. Уфа) наносен непосредственно на ловушку с одной стороны.

Описаные цветные ловушки были выставлены 8 июня в фазу всходов на двух полях яровой пшеницы — № 3 (Безенчикская-139, площадь поля 336 га) и № 13 (Саратовская-29, 454 га) в совхозе-техникуме «Новошинский» Целиноградского района Целиноградской области. На каждом поле было установлено по 4 ловушки в краевой полосе поля с расстоянием между ними 50 м. Ловушки привязывали к колышам высотой 1,5 м той стороной, где не было клееевой поверхности. Нижний край ловушек находился на уровне вершин ямок пшеницы. По мере отрастания растений ловушки поднимались.

Ловушки регулярно, каждые 4—6 дней заменяли на новые. При их замене проводили предварительный учет основных вредителей пшеницы. Наблюдение продолжали до начала созревания колосьев (до 19 августа). Отработанные ловушки с записью даты работы сохраняли в специальной упаковке до конца сезона. Окончательный анализ отловленных насекомых проводили в лаборатории. При этом подсчитывали

* Автор искренне благодарит Г. Л. Харченко за предоставленные ловушки.
всех отловленных насекомых по отрядам и отдельно — основных вредителей яровой пшеницы.

Результаты. За весь период наблюдений в среднем по двум годам отловлено 1342 экземпляра насекомых и пауков каждой ловушки. По отрядам средний отлов распределялся следующим образом: двукрыльные (Diptera) — 531,4 особей (39,5%), трюсы (Thysanoptera) — 452 (33,7%), жужели (Coleoptera) — 140,0 (10,4%), равнокрылые (Hemiptera) и сенокосцы (Psocoptera) — 121,7 (9,1%), перепончатокрылые (Hymenoptera) — 68,8 (5,1%), чешуекрылые (Lepidoptera) — 11,6 (0,9%), полужесткокрылые (Hemiptera) — 5,6 (0,4%), сетчатокрылые (Neuroptera) — по 0,2 (0,01%), прянохвостые (Orthoptera) и поденки (Ephemeroptera) — 10 экземпляров в ловушку (0,7%).

Среди жесткокрылых преобладали хлебные блошки (средний отлов 128,1 особей/ловушку), среди равнокрылых — злаковые тли (102,0 экземпляра) и цикадоиды (18,6). Из двукрыльных наиболее обычными были элининоусы (Nematoecera), нередко попадали хищные мухи зеленщиков (Dolichopodidae), единично встречалась гусеница дождевой муки (Muscidicola destructor), отсутствовали щелевидные и яровые мухи. Следует также отметить частое попадание перепончатокрылых насекомых (в основном паразитических).

Сравнительные средние отлов насекомых на двух опытных полях, нужно отметить явное преобладание на Безенчукской-139 двухкрылых насекомых (48,8% от общего количества насекомых), тогда как на Саратовской-29 их 31,4% от всего улова. В то же время хлебные блошки отловлены на Безенчукской значительно меньше (3,3%), чем на Саратовской (15,1% от общего количества); несколько меньше отловлено и тлей (соответственно 5,7 и 9,3%). По другим группам насекомых (в том числе по трупам) как в общем, так и относительно их количество примерно одинаково.

Общее абсолютное количество насекомых по периодам учетов в течение сезона слабо варьировало, составляя в среднем 100—150 особей/ловушку в каждом учете: в табл.: 1 показана динамика отлова основных групп насекомых (трюсов, хлебных блошек, злаковых тлей и всех двухкрылых). Устойчиво высокий отлов трюсов наблюдался с 1 июля по 8 августа. Отлов хлебных блошек резко увеличился 1—8 августа только на пшенице Саратовских-29: Сравнительно высокий отлов злаковых тлей имел место 1—5 августа также только на Саратовской-29. Относительно высокая численность двухкрылых насекомых наблюдалась с 15 июня по 13 июля. В указанные периоды отлов каждой группы этих насекомых достигал 40—60% от всей регистрируемой ловушками энтомофагами.

Как известно, хлебные полосатые блошки наиболее вредоносны в период всходов и кущения яровой пшеницы, пшеничный трипс и злаковые тли — начиная с появления флагового листа до начала восковой спелости пшеницы. Визуальный осмотр растений и эпизодическое косметическое санитарное обследование полей яровой пшеницы в эти периоды показал, что ни одно из вредителей не представлял угрозы урожаю. Не было обнаружено растений, поврежденных злаковыми и гусеницами муки. Борьба с вредителями в хозяйстве в 1989 году не проводилась.

Определенную роль в сдерживании численности вредителей пшеницы могли играть их энтомофаги. Среди хищных муух зеленщиков наиболее часто встречалась на пшенице Medetera meridionalis Negrobov (из группы: M. falcata Eorv). С помощью цветных ловушек нам впервые удалось изучить динамику лета этого вида: "Общее количество
<table>
<thead>
<tr>
<th>Период посева</th>
<th>№ поля</th>
<th>Пшеничный трис</th>
<th>Хлебные блюдо</th>
<th>Злаковые гн</th>
<th>Двукрылые (всего)</th>
<th>Фаза развития пшеницы</th>
</tr>
</thead>
<tbody>
<tr>
<td>8—15. VI</td>
<td>13</td>
<td>0,4</td>
<td>0,7</td>
<td>0,6</td>
<td>8,6</td>
<td>2—3 листа</td>
</tr>
<tr>
<td>15—22. VI</td>
<td>13</td>
<td>0,4</td>
<td>1,1</td>
<td>1,6</td>
<td>3,8</td>
<td>2 листа</td>
</tr>
<tr>
<td>22—26. VI</td>
<td>13</td>
<td>0,2</td>
<td>9,1</td>
<td>9,3</td>
<td>10,6</td>
<td>кущение</td>
</tr>
<tr>
<td>26. VI</td>
<td>13</td>
<td>4,1</td>
<td>0,2</td>
<td>2,7</td>
<td>19,9</td>
<td>кущение</td>
</tr>
<tr>
<td>1. VII</td>
<td>13</td>
<td>1,7</td>
<td>1,0</td>
<td>1,6</td>
<td>14,1</td>
<td>кущение</td>
</tr>
<tr>
<td>1—7. VII</td>
<td>13</td>
<td>6,4</td>
<td>0,1</td>
<td>0,4</td>
<td>6,9</td>
<td>выход в трубку</td>
</tr>
<tr>
<td>7—13. VII</td>
<td>13</td>
<td>11,6</td>
<td>0,1</td>
<td>1,2</td>
<td>11,4</td>
<td>трубка</td>
</tr>
<tr>
<td>13—19. VII</td>
<td>13</td>
<td>11,8</td>
<td>0,1</td>
<td>1,3</td>
<td>6,9</td>
<td>трубка</td>
</tr>
<tr>
<td>19—26. VII</td>
<td>13</td>
<td>11,8</td>
<td>0,1</td>
<td>1,3</td>
<td>6,9</td>
<td>трубка</td>
</tr>
<tr>
<td>26. VIII</td>
<td>13</td>
<td>10,4</td>
<td>0,1</td>
<td>1,4</td>
<td>5,6</td>
<td>формирование зерновок</td>
</tr>
<tr>
<td>1. VIII</td>
<td>13</td>
<td>10,4</td>
<td>0,1</td>
<td>1,4</td>
<td>5,6</td>
<td>формирование зерновок</td>
</tr>
<tr>
<td>1—5. VIII</td>
<td>13</td>
<td>10,4</td>
<td>0,1</td>
<td>1,4</td>
<td>5,6</td>
<td>формирование зерновок</td>
</tr>
<tr>
<td>5—8. VIII</td>
<td>13</td>
<td>10,4</td>
<td>0,1</td>
<td>1,4</td>
<td>5,6</td>
<td>формирование зерновок</td>
</tr>
<tr>
<td>8—14. VIII</td>
<td>13</td>
<td>10,4</td>
<td>0,1</td>
<td>1,4</td>
<td>5,6</td>
<td>формирование зерновок</td>
</tr>
</tbody>
</table>

*M. meridionalis* отловленных с 26 июня по 14 августа, составило 49,1% отловов. Наиболее интенсивный отлов наблюдался с 1 по 19 июля (35,0% отловов), когда доля *M. meridionalis* достигала 24—26% от всех двукрылых (табл. 2). На твердой пшенице отлов особей этого вида был несколько выше (26,7% от всех двукрылых), чем на мягкой пшенице (14,5% от всех двукрылых). Ранее мы отмечали частое попадание *M. meridionalis* в экологическом сако при укосах на яровой пшенице в окрестностях Кутаиса (1987 г.) и с. Красноярского Новосибирской области (1988 г.). Приведенные материалы показывают, что этот вид является устойчивым элементом экотопа пшеничного поля, хотя до наших исследований представители рода *Medetera* не указывались как зерновых агрофазофилов, обитателей пшеничной биотопии. Общее потребление пшеницы больше частицы пшеницы, питавшихся личинками короедов и других насекомых, экологии проникающих в деревья и деревьями по стволями и корешками ветвями Средней Азии [2]. В США наблюдалась пшеница *Medetera* spp. телями, личинками и неполовозрельными тритами на яблоках [3]. По нашим данным, триты, тля, а также мелкие *Nematozota* широко представлены в биоценозе яровой пшеницы. Именно эти насеко-
Таблица 2. Динамика отлова Medetera meridionalis (в среднем на 1 ловушку в сутки)

<table>
<thead>
<tr>
<th>Период учета</th>
<th>№ поля</th>
<th>Средний отлов</th>
<th>Доля от ловушек, %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>самцов</td>
<td>самок</td>
</tr>
<tr>
<td>26. VI—1. VII</td>
<td>3</td>
<td>0,2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>0,1</td>
<td>0</td>
</tr>
<tr>
<td>1—7. VII</td>
<td>3</td>
<td>1,6</td>
<td>1,6</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>0,7</td>
<td>0,4</td>
</tr>
<tr>
<td>7—13. VII</td>
<td>3</td>
<td>1,6</td>
<td>1,6</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>0,9</td>
<td>1,1</td>
</tr>
<tr>
<td>13—19. VII</td>
<td>3</td>
<td>0,3</td>
<td>0,4</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>0,5</td>
<td>1,2</td>
</tr>
<tr>
<td>19—26. VII</td>
<td>3</td>
<td>0,4</td>
<td>0,4</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>0,2</td>
<td>0,6</td>
</tr>
<tr>
<td>26. VII—1. VIII</td>
<td>3</td>
<td>0,1</td>
<td>0,2</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>0,1</td>
<td>0,1</td>
</tr>
<tr>
<td>1—5. VIII</td>
<td>3</td>
<td>0</td>
<td>0,2</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>0</td>
<td>0,3</td>
</tr>
<tr>
<td>5—8. VII</td>
<td>3</td>
<td>0</td>
<td>0,2</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>0,1</td>
<td>0,3</td>
</tr>
<tr>
<td>8—14. VIII</td>
<td>3</td>
<td>0,3</td>
<td>0,7</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>0</td>
<td>0,5</td>
</tr>
</tbody>
</table>

Таким образом, наши исследования показали, что цветные ловушки могут быть использованы в условиях Северного Казахстана для учета ряда вредителей (тронсы, хлебные блошки, злаковые тли) и их энтомофагов (перепончатокрылые, муши-зеленушки). Следующим этапом исследований должно быть изучение корреляции между отловом насекомых в цветные ловушки и численностью вредоносных фаз вредителей на пшенице с целью определения экономических порогов вредоносности по отлову в ловушках.

Литература

1. Негробов О. П. Виды рода Medetera как энтомофаги короедов. — В кн.: Защита зерна от вредных насекомых и болезней. — М., 1971, с. 89—90.
2. Шахлеверг А. А. Новые виды двукрылых из овощей и пор ползучих Туркестана и сопредельных областей Средней Азии. — Пробл. паразитол. и фауны Туркмении. — М.-Л., 1937, с. 121—139.

Summary

Dynamics of Medetera meridionalis Negrobov (Diptera, Dolichopodidae) and other Insects Trapping Into Coloured Sticking Traps on Spring Wheat/I. Y. G richanov.

It has been stated that coloured traps made of laminated dark fleck-coloured paper with 540—547 nm wave length can be used under conditions of North Kazakhstan for monitoring series of spring wheat pests (corn thrips, striped flea beetle, Sitobian fragarie) and entomophages Hymenoptera, long-legged flies. The peak of trapping happens at the period of grain waxy ripeness. Medetera flew more intensively from stem growth phase up to ear formation.